Abstract

We study the cation transport against an external concentration gradient (cation pumping) that occurs in conical nanopores when zero-average oscillatory and white noise potentials are externally applied. This pumping, based on the electrically asymmetric nanostructure, is characterized here by a load capacitor arrangement. In the case of white noise signals, the conical nanopore acts as an electrical valve that allows extraction of order from chaos. No molecular carriers, specific ion pumps, and competitive ion-binding phenomena are required. The nanopore conductance on/off states mimic those of the voltage-gated ion channels in the cell membrane. These channels allow modulating membrane potentials and ionic concentration gradients along oscillatory pulses in circadian rhythms and the cell cycle. We show that the combination of asymmetric nanostructures with load capacitors can be useful for the understanding of nanofluidic processes based on bioelectrochemical gradients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call