Abstract

Li metal batteries with polymer electrolyte are of great interest for next-generation batteries for high safety and high energy density. However, uneven deposition on the lithium metal surface can greatly affect battery life. Therefore, surface modification on the Li metal become necessary to achieve good performance. Herein, an artificial solid electrolyte interface (SEI) modified lithium metal anode is prepared using cation-polymerization process, as triggered by PF5 generated from CsPF6. As a result, the polarization voltage of Li||Li symmetric battery assembled with artificial SEI-modified Li metal anode was stable with a small over-potential of 25 mV after 3000 h at current density of 1.5 mA cm−2. Electrochemical performance of Li||NCM 622 (LiNi0.6Co0.2Mn0.2O2) full cell with soft-matter polymer electrolyte is significantly improved than bare Li-metal, the capacity retention is 75% after 120 cycles with N/P = 3:1 at a cut-off voltage of 4.3 V. Our work has shed lights on the commercialization of Li metal battery with polymer electrolyte.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.