Abstract

The magnetic and electric properties of ferrites are influenced by the cation distribution within the crystalline spinel lattice. Methods such as extended x-ray-absorption fine structure (EXAFS) have been used to determine cation occupancies within the crystalline structure of materials such as manganese zinc ferrite (MZFO); however, it is not practical to be used for daily analysis. Fourier transform infrared (FTIR) spectroscopy is another technique which has the potential to determine cation occupancy while offering speed and convenience. In the literature it has been demonstrated that in ferrite systems FTIR data can be correlated to cation percentages when comparing tetrahedral (Td) and octahedral (Oh) sites. FTIR spectra were collected on a series of MZFO nanoparticles in the range from 200 to 600cm−1 and two absorbance peaks were observed. The first absorption region shifted with changing sample composition as calculated from transmission EXAFS experiments and elemental analysis. The data was normalized to the maximum of the peak of interest and the shifts were correlated to cation occupancy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call