Abstract
The distribution of the cation-independent mannose 6-phosphate and 78 kDa receptors was studied in postnuclear subcellular fractions from two rat liver cell lines. ELISA assays revealed that the mannose 6-phosphate receptor is enriched in the light buoyant Percoll fractions that contain Golgi structures and early endosomes. Most of the 78 kDa receptor is localized in a heavy fraction at the bottom of the Percoll gradient and smaller amounts in the endosomal fractions. The high-density compartment is denser than lysosomes, contains LAMP2 but not LIMPII or acid hydrolases, and is not disrupted with glycyl- l-phenylalanine 2-naphthylamide, a substrate for cathepsin C that selectively disrupts lysosomes. Immunofluorescence microscopy studies indicate no colocalization of the 78 kDa receptor with the mannose 6-phosphate receptor or LIMPII. Mannose 6-phosphate-independent endocytosed β-glucuronidase was found in the lysosomal, the early and late endosomal fractions. These fractions were immunoadsorbed in columns containing antibodies against the 78 kDa receptor. Only the endocytosed β-glucuronidase present in the early and late endosomal fractions is associated to immunoadsorbed vesicles. In these vesicles, LAMP2 was detected but no LIMPII or the mannose 6-phosphate receptor. Results obtained suggest that the 78 kDa receptor is found along the endocytic pathway, but in vesicles different from the cation-independent mannose 6-phosphate receptor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.