Abstract

Rotating disk electrode voltammograms and infrared reflection absorption spectra indicate that the hydrogen oxidation reaction of platinum in 0.1 M tetramethylammonium hydroxide solution is adversely impacted by time-dependent and potential-driven cation-hydroxide-water coadsorption. Impedance analysis suggests that the hydrogen oxidation reaction inhibition is mainly caused by the hydrogen diffusion barrier of the coadsorbed trilayer rather than intuitive catalyst site blocking by the adsorbed cation species. These results give useful insights on how to design ionomeric binders for advanced alkaline membrane fuel cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call