Abstract

Abstract This paper describes experimental and theoretical studies of cation exchange in porous media with micellar fluids formulated using a broad-equivalent-weight (BEW) sulfonate. The sulfonates can be described as composed of two pseudocomponents—a quasi-monosulfonate (the oil-moving component) and a quasi-disulfonate (the sul-fonate-solubilizing component). With this description and a mass-action model for cation exchange between the micelles, clays, and solution, a match between computer model predictions and results of laboratory single-phase flow tests in Berea sandstone was carried out. The assumptions required are reviewed and independent experimental results presented. With these assumptions and parameter values determined from the Berea history match, satisfactory predictions of divalent cation concentrations in field core experiments have been made. The good predictive capability of this model allows initial screening and development of micellar formulations for specific reservoir applications to be conducted at appropriate hardness levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.