Abstract

SummaryThe long‐term sustainability of forest soils may be affected by the retention of exchangeable nutrient cations such as Ca2+ and the availability of potentially toxic cations such as Al3+. Many of our current concepts of cation exchange and base cation saturation are largely unchanged since the beginnings of soil chemistry over a century ago. Many of the same methods are still in use even though they were developed in a period when exchangeable aluminium (Al) and variable charge were not generally recognized. These concepts and methods are not easily applicable to acid, highly organic forest soils. The source of charge in these soils is primarily derived from organic matter (OM) but the retention of cations, especially Al species, cannot be described by simple exchange phenomena. In this review, we trace the development of modern cation exchange definitions and procedures, and focus on how these are challenged by recent research on the behaviour of acid forest soils. Although the effective cation exchange capacity (CECe) in an individual forest soil sample can be easily shown to vary with the addition of strong base or acid, it is difficult to find a pH effect in a population of different acid forest soil samples. In the very acidic pH range below ca 4.5, soils will generally have smaller concentrations of adsorbed Al3+. This can be ascribed to a reduced availability of weatherable Al‐containing minerals and a large amount of weak, organic acidity. Base cation saturation calculations in this pH range do not provide a useful metric and, in fact, pH is modelled better if Al3+ is considered to be a base cation. Measurement of exchangeable Al3+ with a neutral salt represents an ill‐defined but repeatable portion of organically complexed Al, affected by the pH of the extractant. Cation exchange in these soils can be modelled if assumptions are made as to the proportion of individual cations that are non‐specifically bound by soil OM. Future research should recognize these challenges and focus on redefining our concepts of cation retention in these important soils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.