Abstract

Variations in moss peat cation exchange capacity (CEC) and base saturation (BS) can result in inconsistent initial pH in moss peat-based substrates created using standard formulas for limestone additions and can lead to subsequent drift from the initial pH in those substrates. This study was conducted to determine the extent of such variation. CEC and BS were measured in three replications on 64 moss peat samples that were selected from three mires across Alberta, Canada, to represent maximum gradients in plant species composition within six degrees of decomposition acceptable for professional peat-based substrates. CEC ranged from 108 to 162 cmol·kg−1 (meq·100 g). Averaged overall samples, BS ranged from 15% to 71% of CEC and calcium accounted for 68%, magnesium for 25%, sodium for 5%, and potassium for 1.4% of BS. CEC was positively correlated to the amount of Sphagnum fuscum (Schimp.) Klingrr. in the sample (r = 0.22). BS was positively correlated to the amount of sedge (r = 0.28). Neither CEC nor BS was influenced by degree of decomposition (r = 0.002 and r = 0.08, respectively). Moss peats with high CEC have a greater buffering capacity than those with low CEC, resulting in less pH drift. Moss peats with high BS should have a low neutralization requirement to achieve a target pH. Understanding the species composition in peat-based substrates can alleviate problems of inconsistent initial pH and subsequent pH drift.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call