Abstract
Cation exchange has become a major postsynthetic tool to obtain nanocrystals with a combination of stoichiometry, size, and shape that is challenging to achieve by direct wet-chemical synthesis. Here, we report on the transformation of highly anisotropic, ultrathin, and planar PbS nanosheets into CdS nanosheets of the same dimensions. We monitor the evolution of the Cd-for-Pb exchange by ex-situ TEM, HAADF-STEM, and EDX. We observe that in the early stages of the exchange the sheets show large in-sheet voids that repair spontaneously upon further exchange and annealing, resulting in ultrathin, planar, and crystalline CdS nanosheets. After cation exchange, the nanosheets show broad sub-band gap luminescence, as often observed in CdS nanocrystals. The photoluminescence excitation spectrum reveals the heavy- and light-hole exciton features, with very strong quantum confinement and large electron-hole Coulomb energy, typical for 2D ultrathin Cd-chalcogenide nanosheets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemistry of materials : a publication of the American Chemical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.