Abstract

Polymers formed from N-isopropylacrylamide (NIPAM) are highly water soluble and undergo a temperature-induced phase transition to an insoluble state. The phase behavior is determined by competing hydrophilic and hydrophobic forces. In this report, additional insight regarding the effect soluble metals have on the phase transition process is provided by showing that cation solvation aids with stabilization of hydrophobic forces. This reduces barriers to rehydration and decreases thermodynamic entropy and enthalpy, obtained with variable-temperature 1H nuclear magnetic resonance spectroscopy of NIPAM hydrogels in D2O, NaCl, MgCl2, and CaCl2. For the series of cations studied, it is observed that the order of increasing effect to facilitate the phase transition is Ca2+ < Mg2+ < Na+. NaCl and MgCl2 exhibited similar effects on the thermodynamics of the collapsing process. However, significant differences in the phase transition thermodynamics are observed between MgCl2 and CaCl2 salt solutions. The influence on Stage 1 enthalpy and entropy values for CaCl2 solutions is approximately half that of the MgCl2 solutions. This difference is likely related to their charge density of Ca2+, which is approximately half that of Mg2+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.