Abstract

Quasielastic neutron scattering (QENS) has been used to study the cation dynamics in the pyridinium based ionic liquid (IL) 1-N-butylpyridinium bis((trifluoromethyl)sulfonyl)imide (BuPy-Tf(2)N). This IL allows for a detailed investigation of the dynamics of the cations only, due to the huge incoherent scattering cross section of the cation (σ(inc)(cation) >> σ(inc)(anion)). The measured spectra can be decomposed into two Lorentzian lines, indicative of two distinct dynamic processes. The slower of these two processes is diffusive in nature, whereas the faster one can be attributed to localized motions. The temperature dependence of the diffusion coefficient of the slow process follows an Arrhenius law, with an activation energy of E(A) = 14.8 ± 0.3 kJ/mol. Furthermore, we present here results from experiments with polarized neutrons. These experiments clearly show that the slower of the two observed processes is coherent, while the faster one is incoherent in nature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.