Abstract
Hybrid organic-inorganic perovskites exhibit remarkable potential as cost-effective and high-efficiency materials for photovoltaic applications. Their exceptional chemical tunability opens further routes for optimizing their optical and electronic properties through structural engineering. Nevertheless, the extraordinary softness of the lattice, stemming from its interconnected organic-inorganic composition, unveils formidable challenges in structural characterization. Here, by focusing on the quintessential methylammonium lead triiodide, MAPbI3, we combine first-principles modeling with high-resolution neutron scattering data to identify the key stationary points on its shallow potential energy landscape. This combined experimental and computational approach enables us to benchmark the performance of a collection of semilocal exchange-correlation functionals and to track the local distortions of the perovskite framework, hallmarked by the inelastic neutron scattering response of the organic cation. By conducting a thorough examination of structural distortions, we introduce the IKUR-PVP-1 structural data set. This data set contains nine mechanically stable structural models, each manifesting a distinct vibrational response. IKUR-PVP-1 constitutes a valuable resource for assessing thermal behavior in the low-temperature perovskite phase. In addition, it paves the way for the development of accurate force fields, enabling a comprehensive understanding of the interplay between the structure and dynamics in MAPbI3 and related hybrid perovskites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.