Abstract

Abstract Magnesium battery is a recently emerging energy storage system that has attracted considerable attention. However, its development is limited by the lack of proper electrode materials for reversible Mg2+ intercalation/de-intercalation with satisfied capacity. Here, we firstly report easy synthesis of Ti-deficient bronze titanium dioxide nanowires by topology transformation of H-titanate precursor. It's found OH− anions substitution of O2− supports the formation of Ti vacancies in TiO2(B) with a high concentration, denoted as (Ti0.91O1.64(OH)0.36), and can be utilized as a robust host for Mg-ion storage. Both the theoretical and experimental study revealed that Ti-deficient TiO2(B) exhibits much improved electronic properties with unpaired electrons. Density functional theory (DFT) calculations also reveal Ti vacancies provide more feasible binding sites for Mg-ion. More importantly, it's surprisingly found the presence of protons enables a suitable binding energy for Mg-ion intercalation and extraction. As a result, such material displays discharge and charge capacities of 217.3 and 165.3 mA h g−1 at 0.02 A g−1, representing the highest value among the reported Ti-based electrode materials as well as a high initial Columbic efficiency up to 76.1%. This study gives a new and in-depth view on how cation-deficient structure regulates and promotes the reversible energy storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call