Abstract

The structures of the new oxysulfide Ruddlesden-Popper phases La2LnMS2O5 (Ln=La, Y; M=Nb, Ta) are reported together with an iodide-containing variant: La3-xNb1+xS2O5I2x (0<or=x<0.11). Structures were refined against powder-neutron or single-crystal X-ray diffraction data. All of these compounds exhibit an intergrowth structure with NaCl-type slabs [La2S2] alternating regularly with perovskite-type oxide slabs [LnMO5] or [La1-xNb1+xO5I2x]. In the oxide slabs, the trivalent and pentavalent cations are disordered on the long-length scale probed by diffraction methods, but bond length considerations suggest that they must be ordered at least on the length scale of the unit cell. The [LnMO5] block of the iodide-free compounds derive from the ideal [Ti2O5] blocks found in Ln2Ti2S2O5 (Ln=Nd-Er; Y) by the formal substitution of two Ti4+ ions with one Ln3+ and one M5+ion. The unusual partial insertion of iodide in the perovskite voids of the [LaNbO5] block in La3NbS2O5 was found to be coupled to a La/Nb substitution, maintaining the charge balance within the [La1-xNb1+xO5I2x]2- block. The Nb5+ ions were found to be too resistant to reduction to undergo the intercalation of alkali metals observed in the Ln2Ti2S2O5 series.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.