Abstract

The challenge with aqueous zinc-ion batteries (ZIBs) lies in finding suitable cathode materials that can provide high capacity and fast kinetics. Herein, two-dimensional topological Bi2 Se3 with acceptable Bi-vacancies for ZIBs cathode (Cu-Bi2-x Se3 ) is constructed through one-step hydrothermal process accompanied by Cu heteroatom introduction. The cation-deficient Cu-Bi2-x Se3 nanosheets (≈4nm) bring improved conductivity from large surface topological metal states contribution and enhanced bulk conductivity. Besides, the increased adsorption energy and reduced Zn2+ migration barrier demonstrated by density-functional theory (DFT) calculations illustrate the decreased Coulombic ion-lattice repulsion of Cu-Bi2-x Se3 . Therefore, Cu-Bi2-x Se3 exhibits both enhanced ion and electron transport capability, leading to more carrier reversible insertion proved by in situ synchrotron X-ray diffraction (SXRD). These features endow Cu-Bi2-x Se3 with sufficient specific capacity (320mAhg-1 at 0.1Ag-1 ), high-rate performance (97mAhg-1 at 10Ag-1 ), and reliable cycling stability (70mAhg-1 at 10Ag-1 after 4000 cycles). Furthermore, quasi-solid-state fiber-shaped ZIBs employing the Cu-Bi2-x Se3 cathode demonstrate respectable performance and superior flexibility even under high mass loading. This work implements a conceptually innovative strategy represented by cation defect design in topological insulator cathode for achieving high-performance battery electrochemistry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.