Abstract

The interaction of trivalent lanthanides with sodium dodecyl sulfate micelles (SDS) in aqueous solution has been studied by a variety of experimental techniques. Potentiometric measurements with a sodium selective electrode, steady-state fluorescence spectra of Ce(III), emission lifetime measurements of Ce(III), Tb(III), and Eu(III), and electronic paramagnetic resonance spectra (EPR) of Gd(III) all show that the lanthanide ions bind to the micellar surface. From analysis of the Tb(III) lifetime measurements in water and D2O solutions, it is found that the lanthanide ions lose one hydration water on binding to SDS. However, the EPR measurements suggest that the lanthanide ions still have considerable freedom of movement. Energy transfer between Ce(III) and Tb(III) has been used to obtain further information on multiple lanthanide ion binding. From steady-state fluorescence measurements in aqueous solution in the absence of SDS no energy transfer is observed, although there is quenching of Tb(III) emission by Ce(III), which is found to follow good Stern-Volmer kinetics. In the presence of SDS micelles, very different behavior is observed and energy transfer occurs from excited Ce(III) to Tb(III). This is only possible when the two ions are on the same micelle. The energy transfer phenomena is highly dependent on micelle concentration and has been analyzed theoretically via a Monte Carlo simulation. This shows that the lanthanide ions bind close to the micelle surface, and are consistent with the loss of a water molecule. Also, assuming a Dexter-type model in which the energy transfer intensity is proportional to the inverse of the square root of the average distance between cerium and the closest terbium it is possible to reproduce qualitatively the experimental cerium(III)-sensitized Tb(III) luminescence intensity data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.