Abstract

A critical, challenging environmental issue is explored pollution of water supplies by discharging industrial/pharmaceutical/hospital/urban wastewaters into the aquatic environment. These needs introducing/developing novel photocatalysts/adsorbents/procedures for removing or mineralizing various pollutants in wastewater before discharging them into marine environments. Further, optimizing conditions to achieve the highest removal efficiency is an important issue. In this study, CaTiO3/g-C3N4 (CTCN) heterostructure was synthesized and characterized by some identification techniques. The simultaneous interaction effects of the experimental variables on the boosted photocatalytic activity of CTCN in the degradation of gemifloxcacin (GMF) were studied in RSM design. The optimal values for four parameters were: catalyst dosage: 0.63 g L−1, pH: 6.7, CGMF: 1 mg L−1, and irradiation time: 27.5 min, with approximately 78.2% of degradation efficiency. The quenching effects of the scavenging agents were studied to show the reactive species' relative importance in GMF photodegradation. The results illustrate that the reactive •OH plays a significant role, and the electron plays a minor role in the degradation process. The direct Z-scheme mechanism better described the photodegradation mechanism due to the great oxidative and reductive abilities of prepared composite photocatalysts. This mechanism is an approach to efficiently separating photogenerated charge carriers and improving the CaTiO3/g-C3N4 composite photocatalyst activity. The COD has been performed to study the details of the mineralization of GMF. The pseudo-first-order rat (from the Hinshelwood model) constants of 0.046 min−1 (t1/2 = 15.1 min) and 0.048 min−1 (t1/2 = 14.4 min) were respectively obtained from the GMF photodegradation data and COD results. The prepared photocatalyst retained its activity after five reusing runs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call