Abstract

We present spatially and spectrally resolved emission from nanowires with a thin radial layer of GaAs embedded in AlGaAs barriers, grown radially around taper-free GaAs cores. The GaAs layers are thin enough to show quantization, and are quantum wells. Due to their shape, they are referred to as quantum well tubes (QWTs). We have investigated three different nominal QWT thicknesses: 1.5, 2.0, and 6.0 nm. They all show average emission spectra from the QWT with an energy spread corresponding to a thickness variation of ±30%. We observe no thickness gradient along the length of the nanowires. Individual NWs show a number of peaks, corresponding to different QW thicknesses. Apart from the thinnest QWT, the integrated emission from the QWTs shows homogeneous emission intensity along the NW. The thinnest QWTs show patchy emission patterns due to the incomplete coverage of the QWT. We observe a few NWs with larger diameters. The QWTs in these NWs show spatially resolved variations across the NW. An increase in the local thickness of the QWT at the corners blocks the diffusion of carriers from facet to facet, thereby enabling us to visualise the thickness variations of the radial quantum wells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.