Abstract
Nitrogen-vacancy (NV) centers in diamond are a promising candidate as a solid state qubit memory for quantum information as they possess very long coherence times even at room temperature. Furthermore, NV centers are very sensitive to their electromagnetic environment and are addressable in the GHz frequency range. Here we review our progress towards the detection of single NV centers for the implementation of fast on demand coupling between NV centers and GHz electromagnetic fields. Precisely, we present efforts towards mapping NV centers with a cathodoluminescence setup. Developing such capability is important for patterning local one-qubit gates for the application of high amplitude electromagnetic fields as a tuning parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.