Abstract

The well-known method for the determination of selenium(IV), which is based on the cathodic stripping voltammetry of copper(I) selenide, has been adapted for application at the thin-film mercury electrode on glassy carbon (TFME). Insufficient reproducibility and sensitivity have been overcome by using a 0.1 mol/L HClO4 electrolyte solution containing 0.02 mol/L thiocyanate ions. Thiocyanate ions have been found to increase the peak height of the selenium response and shift it to more positive potentials. This behaviour is explained by an adsorption of SCN– at the interface glassy carbon/Cu2Se and its action as an electron transfer catalyst between glassy carbon and copper(I) selenide. A 3σ-detection limit of 75 ng/L Se(IV) has been achieved. The relative standard deviation is 5.2% at 5 μg/L selenium(IV). The influence of cadmium(II), arsenic(III), zinc(II), iron(III) and lead(II) ions on the selenium response has been studied. In case of lead ions, a new signal occurred at more negative potentials than the reduction of Cu2Se. This signal, which is probably due to the reduction of PbSe, can also be used for the determination of selenium(IV).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call