Abstract

The reductive coupling and hydrogenation of alkenes were catalyzed by the B12 model complex, heptamethyl cobyrinate perchlorate (1), in the presence of acid during electrolysis at −0.7 V vs. Ag/AgCl in acetonitrile. Conjugated alkenes showed a good reactivity during electrolysis to form reduced products. The product distributions were dependent on the substituents at the CC bond of the alkenes. ESR spin-trapping experiments using 5,5-dimethylpyrroline N-oxide (DMPO) revealed that the cobalt-hydrogen complex (CoH complex) should be formed during the electrolysis and it functioned as an intermediate for the alkene reduction. The electrolysis was also applied to an alkyne, such as phenylacetylene, to form 2,3-diphenylbutane (racemic and meso) and ethylbenzene via styrene as reductive coupling and hydrogenated products, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.