Abstract

Electro‐reductive radical cyclisation of aryl halides affords the corresponding hetero‐ and carbo‐cycles in an undivided flow reactor equipped with steel and carbon electrodes using an organic mediator. A dissolving metal anode is not needed, and the mediator can be employed in a sub‐stoichiometric amount (0.05 equiv), increasing the practical utility of cathodic radical cyclisation. The methodology is applied to O‐, N‐, and C‐tethers, yielding tricyclic fused and spiro systems. In the absence of mediator, the major pathway is hydrogenolysis of the C−X bond, a 2 e− process occurring at the cathode. Predominance of the radical pathway in presence of a strongly reducing mediator (M) is consistent with homogeneous electron‐transfer in a reaction layer detached from the cathode surface, where the flux of M .− leaving the electrode is such that little aryl halide reaches the cathode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.