Abstract

Acathodic photoelectrochemical sensor has been developedfor the determination of exosomes, based on a dual-signal reduction strategy. A heterostructure of NiO/BiOI/Au NP/CdSe was synthesized as a photoelectrochemical sensing interface, which is able to suppress the recombination of electron-hole pairs and produce a higher photocurrent. The obtained materials were characterized, and the mechanism for the generation of the cathodic photocurrent was proposed. CdSe QDs (quantum dots) modified with DNA2 were assembled on the electrode through the hybridization with EpCAM aptamer on the surface of ITO/NiO/BiOI/Au NP. The introduction of CdSe QDs to the electrode increases the photocurrent.Therecognition of exosomes with aptamer DNA led to the separation of CdSe QDs from theelectrode, which in turn caused the decrease of photocurrents. Meanwhile, the big volume of exosomes hinders the electron transfer between the electrode and electrolyte. Due to the dual reduction effect, a sensitive PEC sensor was obtained with a detection limit of 1.2 × 102 particles/μL exosomes (λex = 430nm, bias voltage = - 0.1V). The cathodic photoelectrochemical sensor showed good selectivity, performed well in a complex biological environment and could be used to distinguishbreast cancer patients from healthy individuals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.