Abstract

Small amounts of electric current stimulate bone formation in the region of a cathode. The purpose of this experiment is to compare changes in oxygen and hydroxyl ion concentration that occur at the cathode at current levels known to be capable of inducing osteogenesis (10-20 muamps) with those changes that occur at current levels known to be toxic to bone (100 muamps). An oxygen consumption chamber containing an oxygen electrode is fitted with two stainless steel electrodes which are connected to a constant current source. At the cathode, with a current of 100 muamps, oxygen is consumed at nearly stoichiometric rates. At higher current (100 muamps) levels, cathodic oxygen consumption gives way to hydrogen evolution. Cathodic hydroxyl ion production is directly proportional to current. It is concluded from these in vitro experiments that at 10-20 muamps the oxygen tension in the vicinity of the cathode is lowered and the pH is moderately increased. At 100 muamps the oxygen tension is not lowered, but the pH is increased dramatically. If these same changes occur in the vicinity of a cathode in vivo, then lowering the local tissue oxygen tension and raising the local pH may be mechanisms operative in electrically induced bone formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call