Abstract

Thin films of Zr–O/Al–O were deposited on SKD 11 tool steel substrate using Zr and Al cathodes in a cathodic arc plasma deposition system. The substrates were mounted on a rotating holder which alternatively exposed them to plasma from the two cathodes. The influence of the Zr and Al cathode arc currents and the substrate bias on the mechanical and the structural properties of the films were investigated. Films with a nano-layered structure of alternating Al-rich and Zr-rich layers were obtained. The Zr layers contained nano-crystallites of (101) oriented t-ZrO structure. Crystallites with α-Al 2O 3 structure were observed only when the substrate was negatively biased in the 100–150 V range. The hardness of the film decreased with the increase of Zr cathode current from 60 to 80 A, increased when the Al cathode current increased from 25 to 30 A, and decreased when the Al cathode current increased from 30 to 35 A. The hardness of the film increased with the increase of bias voltage up to − 150 V and then decreased with further increase of the negative bias. The film structure was elucidated by HRTEM microscopy. Good correlation between the residual stress and the hardness enhancement of the films was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.