Abstract

AbstractIn recent years, with the large‐scale commercial application of lithium‐ion batteries, the shortage of lithium resource reserves and the rising price limit its development. The sodium‐ion batteries as a new type of secondary chemical power supply, with ample resources, high safety, as well as great electrochemical performance, are expected to form complementary with Lithium‐ion batteries in the domain of extensive electrochemical energy storage and low‐velocity electric vehicles. However, due to its low energy density, it remains challenging to develop high‐performance sodium‐ion batteries. As is well‐known, the cathode material is the essential factor affecting the performance of sodium‐ion batteries. In order to solve these questions, cathode modification of sodium‐ion batteries aroused wide concern for improving the electrochemical performance. Here, the authors first discuss the challenges of sodium‐ion batteries, and review the energy storage mechanism and the causes of the low energy density. Then, recent studies on cathode modification are summarized based on the mainstream cathode materials in sodium‐ion batteries including sodium‐based transition‐metal oxides, polyanionic compounds, and Prussian blue analogues. Finally, the prospects of sodium‐ion batteries are proposed, which provides promising strategies for the development and practical application of cathode materials in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.