Abstract

Focal hand dystonia (FHD) in musicians is a movement disorder causing abnormal movements and irregularities in playing. Since weak electrical currents applied to the brain induce persistent excitability changes in humans, cathodal tDCS was proposed as a possible non-invasive approach for modulating cortical excitability in patients with FHD. However, the optimal targets and modalities have still to be determined. In this pilot study, we delivered cathodal (2 mA), anodal (2 mA) and sham tDCS over the motor areas bilaterally for 20 min daily for five consecutive days in two musicians with FHD. After cathodal tDCS, both patients reported a sensation of general wellness and improved symptoms of FHD. In conclusion, our pilot results suggest that cathodal tDCS delivered bilaterally over motor-premotor (M-PM) cortex for 5 consecutive days may be effective in improving symptoms in FHD.

Highlights

  • Focal hand dystonia (FHD) in musicians is a movement disorder characterized by irregularities in playing due to involuntary muscular activation in both the hand and arms (Cho and Hallett, 2016; Stahl and Frucht, 2017)

  • Quantitative evaluation showed that whereas S-transcranial Direct Current Stimulation (tDCS) and AtDCS left patients’ performance unchanged, after C-tDCS both patients could draw a complete Copy of an Archimedes spiral

  • The time elapsing before each patient could draw a complete spiral differed in the two patients: patient 1 drew a complete spiral 1 day after the entire 5day C-tDCS session, whereas patient 2 achieved a complete spiral immediately after the first C-tDCS application in the postC-tDCS assessment

Read more

Summary

Introduction

Focal hand dystonia (FHD) in musicians is a movement disorder characterized by irregularities in playing due to involuntary muscular activation in both the hand and arms (Cho and Hallett, 2016; Stahl and Frucht, 2017). FHD generally occurs in people who have spent a long period of time performing repetitive skilled motor tasks (Cho and Hallett, 2016). Being a network disorder that involves several brain areas, FHD has a complex pathophysiology including several general abnormalities as the loss of inhibition, sensory dysfunction, and abnormal plasticity (Cho and Hallett, 2016). Even though the causes of this disabling condition remain unclear, maladaptive plasticity has been proposed as driver for FHD in musicians (Konczak and Abbruzzese, 2013)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call