Abstract

Background The use of digital silhouette angiography (DSA) has been restricted due to lack of a technique that allows for repeated intra-arterial inspections over a prolonged period. Current studies are focused on the arteries that can be cannulated multiple times. We intended to develop and test a technique that would enable repeated performance of various catheterizations and transcatheter operations for a prolonged period, at the same site, with fewer postsurgical complications. Methods Thirty rats were randomly divided into five groups. Ventral caudal artery cannulation was performed via the transtail approach after grouping for subsequent experiments. Histological staining and scanning electron microscopy were used to assess endothelial injuries. Results The rats survived post catheterization of ventral caudal artery and establishment of animal models. The average time of ventral caudal artery cannulation was significantly shorter than that of the femoral (p < 0.01) and common carotid arteries (p < 0.01). In rats, the transtail artery technique effectively allowed selective arterial catheterization and angiography. Histological staining and scanning electron microscopy of the abdominal aorta revealed disruption of the intima and denuded wavy endothelial surface. Conclusions We describe a novel method for artery sheath catheterization through the ventral caudal artery in rats; it may be possible to perform serial DSA studies and interventional operations with a single sheath channel in rats over a prolonged period. We believe that this approach will improve the utility of rats as models of human diseases and enable the broader use of rodent models for endovascular therapy research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.