Abstract

The fusion of pre-operative imaging and intra-operative fluoroscopy may support physicians during mechanical thrombectomy for catheter navigation from the aortic arch to carotids. Nevertheless, the aortic arch volume is too important for intra-operative contrast dye injection leading to a lack of common anatomical structure of interest that results in a challenging 3D/2D registration. The objective of this work is to propose a registration method between pre-operative 3D image and no contrast dye intra-operative fluoroscopy. The registration method exploits successive 2D fluoroscopic images of the catheter navigating in the aortic arch. The similarity measure is defined as the normalized cross-correlation between a binary combination of catheter images and a pseudo-DRR resulting from the 2D binary projection of the pre-operative 3D image (MRA or CTA). The 3D/2D transformation is decomposed in out-plane and in-plane transformations to reduce computational complexity. The 3D/2D transformation is then obtained by maximizing the similarity measure through multiresolution exhaustive search. We evaluated the registration performance through dice score and mean landmark error. We evaluated the influence of parameters setting, aortic arch type and 2D navigation sequence duration. Results on a physical phantom and data from a patient who underwent a mechanical thrombectomy showed good registration accuracy with a dice score higher than 92% and a mean landmark error lower than the quarter of a carotid diameter (8-10mm). A new registration method compatible with no contrast dye fluoroscopy has been proposed to guide the crossing from aortic arch to a carotid in mechanical thrombectomy. First evaluation showed the feasibility and accuracy of the method as well as its compatibility with clinical routine practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.