Abstract

Voltage waveform breakdown is characteristic of barotraumatic shock-wave generation during electrical catheter ablation of cardiac arrhythmias. The purpose of this investigation was to avoid barotrauma by defining, in vitro, the limits of pulse amplitude and pulse width for rectangular constant-current pulses that do not result in voltage breakdown and subsequently to determine what pulsing frequency is safe for use when high-energy trains of pulses are used. Electric pulses were delivered with a variable waveform modulator with a wide dynamic range and bandwidth capable of delivering pulses of 30-10,000-mu sec duration with amplitudes of up to 25 A. Cathodal pulses were delivered to a 6F catheter immersed in fresh anticoagulated bovine blood warmed to 37 degrees C to stimulate the milieu of a catheter in the chambers of the human heart. The maximum pulse amplitude that could be delivered without incurring voltage waveform breakdown varied inversely with pulse duration. Pulses of 30 mu sec broke down at currents above 24 A (2,500 V). Pulses of 10,000-mu sec duration broke down at 1 A (250 V). The maximum safely delivered energy for a single pulse was 2.5 J for pulses of 80-120 mu sec. Peak power for single pulses was maximum at 50-55 kW with 30-50-mu sec pulses. Charge delivery for single pulses was maximized at 9 mC with long, 10,000-mu sec duration pulses. To deliver an electrical pulse with energy significantly greater than 2.5 J without incurring voltage breakdown, trains of pulses were delivered where each pulse in the train had previously been shown to be free of voltage breakdown.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call