Abstract

Histotripsy is a minimally invasive ultrasound therapy that has shown rapid liquefaction of blood clots through human skullcaps in an in vitro intracerebral hemorrhage model. However, the efficiency of these treatments can be compromised if the skull-induced aberrations are uncorrected. We have developed a catheter hydrophone which can perform aberration correction (AC) and drain the liquefied clot following histotripsy treatment. Histotripsy pulses were delivered through an excised human skullcap using a 256-element, 500-kHz hemisphere array transducer with a 15-cm focal distance. A custom hydrophone was fabricated using a mm PZT-5h crystal interfaced to a coaxial cable and integrated into a drainage catheter. An AC algorithm was developed to correct the aberrations introduced between histotripsy pulses from each array element. An increase in focal pressure of up to 60% was achieved at the geometric focus and 27%-62% across a range of electronic steering locations. The sagittal and axial -6-dB beam widths decreased from 4.6 to 2.2 mm in the sagittal direction and 8 to 4.4 mm in the axial direction, compared to 1.5 and 3 mm in the absence of aberration. After performing AC, lesions with diameters ranging from 0.24 to 1.35 mm were generated using electronic steering over a mm grid in a tissue-mimicking phantom. An average volume of 4.07 ± 0.91 mL was liquefied and drained after using electronic steering to treat a 4.2-mL spherical volume in in vitro bovine clots through the skullcap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.