Abstract

The objective of this study is to investigate the role of cathepsin H (CatH), a lysosomal cysteine protease, in the development of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. EAE was induced in CatH-deficient mice (CatH-/-) and wild-type littermates (+/+) using myelin oligodendrocyte glycoprotein (MOG) 35-55. The effects of CatH deficiency were determined by clinical scoring, mRNA expression levels of Tbx21, Rorc and FoxP3, protein levels of poly(I:C)-induced toll-like receptor 3 (TLR3) and phosphorylation of IRF3, and secretion of interferon-β (IFN-β) by splenocytes. CatH-/- showed a significantly earlier disease onset of EAE and increased Th1 cell differentiation in splenocytes. Splenocytes prepared from immunized CatH-/- showed a significant decrease in poly(I:C)-induced increased TLR3 expression, interferon regulatory factor 3 (IRF3) phospholylation and IFN-β secretion. Therefore, CatH deficiency impaired TLR3-mediated activation of IRF3 and consequent secretion of IFN-β from dendritic cells, leading to the enhancement of Th1 cell differentiation and consequent early disease onset of EAE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.