Abstract

Neuronal ceroid lipofuscinoses (NCLs) are a group of lysosomal storage disorders characterized pathologically by neuronal accumulation of autofluorescent storage material and neurodegeneration. An ovine NCL form is caused by a recessive point mutation in the cathepsin D gene, which encodes a lysosomal aspartyl protease. This mutation results in typical NCL pathology with neurodegeneration and characteristic neuronal storage material. We have generated a Drosophila NCL model by inactivating the conserved Drosophila cathepsin D homolog. We report here that cathepsin D mutant flies exhibit the key features of NCLs. They show progressive neuronal accumulation of autofluorescent storage inclusions, which are also positive for periodic acid Schiff and luxol fast blue stains. Ultrastructurally, the storage material is composed of membrane-bound granular electron-dense material, similar to the granular osmiophilic deposits found in the human infantile and ovine congenital NCL forms. In addition, cathepsin D mutant flies show modest age-dependent neurodegeneration. Our results suggest that the metabolic pathway leading to NCL pathology is highly conserved during evolution, and that cathepsin D mutant flies can be used to study the pathogenesis of NCLs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.