Abstract

Columnaris disease, caused by Flavobacterium columnare, severely impacts the production of freshwater finfish species. Therefore, efforts to better understand the biological processes of F. columnare, including the formation of biofilms and their contribution to disease, are ongoing. In this study, we incubated F. columnare cultures with channel catfish mucus and used high-throughput RNA sequencing to evaluate global changes in gene expression. Our data show that mucus activates in vitro biofilm formation. The analysis of F. columnare transcriptomes after the addition of mucus revealed significant differentially expressed genes (DEGs) between the planktonic and biofilm states. DEGs common among all biofilms were enriched for gene ontology groups including signal transduction, ligand binding and cellular homeostasis and are likely necessary for biofilm formation. Iron acquisition systems included TonB-dependent receptor and ferroxidase genes were expressed among all biofilms, while siderophore synthesis genes were only expressed in mucus-stimulated biofilms. The current analysis of F. columnare transcriptomes adds valuable information about the basic biological processes that occur during the planktonic and biofilm states. This work serves as a basis for future studies on understanding how biofilms are established and how they contribute to disease progression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.