Abstract
Local binary feature learning has attracted a lot of researches in image recognition due to its vital effectiveness. Generally, in the traditional local feature learning methods, a projection is learned to map the patches of image into binary features and then a codebook is generated by clustering the binary features with K-means clustering. However, these local feature learning methods, such as compact binary face descriptor and discriminative binary descriptor, ignore the category specific distributions of the original features during the feature learning process and use the real-valued clustering approach to generate the codebook, the discriminant of feature is degraded and the merits of binary feature are lost. To tack these problems, in this paper, we propose a novel category-preserving binary feature learning and binary codebook leaning (CPBFL-BCL) method for finger vein recognition. In CPBFL-BCL, the discrimination of learned binary features is generated by criteria of fisher discriminant analysis and category manifold preserving regularity during the feature learning process, and a novel binary clustering method based on K-means clustering is designed to generate binary codebook. Experimental results on recognition and retrieval tasks using two public finger vein databases are presented and demonstrate the effectiveness and efficiency of the proposed method over the state-of-the-art finger vein methods and a finger vein retrieval method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Machine Learning and Cybernetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.