Abstract

Unsupervised domain adaptation (UDA) is a low-cost way to deal with the lack of annotations in a new domain. For outdoor point clouds in urban transportation scenes, the mismatch of sampling patterns and the transferability difference between classes make cross-domain segmentation extremely difficult. To overcome these challenges, we propose a category-level adversarial framework. Firstly, we propose a multi-scale domain conditioned block that facilitates to extract the critical low-level domain-dependent knowledge and reduce the domain gap caused by distinct LiDAR sampling patterns. Secondly, we make full use of multiple representation forms (i.e., point-based sets and voxel-based cells) and utilize the prediction consistency between the two forms to measure how well each point is semantically aligned. The model then focuses on the poorly-aligned points without affecting the well-aligned points. Experimental results on three autonomous driving point cloud datasets show that the proposed method outperforms existing methods by a large margin, especially on the low-beam to high-beam cross-domain segmentation task.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.