Abstract
Category hierarchies often evolve at a much slower pace than the documents reside in. With newly available documents kept adding into a hierarchy, new topics emerge and documents within the same category become less topically cohesive. In this paper, we propose a novel automatic approach to modifying a given category hierarchy by redistributing its documents into more topically cohesive categories. The modification is achieved with three operations (namely, sprout, merge, and assign) with reference to an auxiliary hierarchy for additional semantic information; the auxiliary hierarchy covers a similar set of topics as the hierarchy to be modified. Our user study shows that the modified category hierarchy is semantically meaningful. As an extrinsic evaluation, we conduct experiments on document classification using real data from Yahoo! Answers and AnswerBag hierarchies, and compare the classification accuracies obtained on the original and the modified hierarchies. Our experiments show that the proposed method achieves much larger classification accuracy improvement compared with several baseline methods for hierarchy modification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.