Abstract
Object category learning is a fundamental ability, requiring the combination of "bottom-up" stimulus-driven with "top-down" task-specific information. It therefore may be a fruitful domain for study of the general neural mechanisms underlying cortical plasticity. A simple model predicts that category learning involves the formation of a task-independent shape-selective representation that provides input to circuits learning the categorization task, with the computationally appealing prediction of facilitated learning of additional, novel tasks over the same stimuli. Using fMRI rapid-adaptation techniques, we find that categorization training (on morphed "cars") induced a significant release from adaptation for small shape changes in lateral occipital cortex irrespective of category membership, compatible with the sharpening of a representation coding for physical appearance. In contrast, an area in lateral prefrontal cortex, selectively activated during categorization, showed sensitivity posttraining to explicit changes in category membership. Further supporting the model, categorization training also improved discrimination performance on the trained stimuli.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.