Abstract

We construct and investigate the structure of the Khovanov-Lauda–Rouquier algebras R and their cyclotomic quotients Rλ which give a categorification of quantum generalized Kac–Moody algebras. Let U𝔸(𝔤) be the integral form of the quantum generalized Kac–Moody algebra associated with a Borcherds–Cartan matrix A = (aij)i, j ∈ I and let K0(R) be the Grothendieck group of finitely generated projective graded R-modules. We prove that there exists an injective algebra homomorphism [Formula: see text] and that Φ is an isomorphism if aii ≠ 0 for all i ∈ I. Let B(∞) and B(λ) be the crystals of [Formula: see text] and V(λ), respectively, where V(λ) is the irreducible highest weight Uq(𝔤)-module. We denote by 𝔅(∞) and 𝔅(λ) the isomorphism classes of irreducible graded modules over R and Rλ, respectively. If aii ≠ 0 for all i ∈ I, we define the Uq(𝔤)-crystal structures on 𝔅(∞) and 𝔅(λ), and show that there exist crystal isomorphisms 𝔅(∞) ≃ B(∞) and 𝔅(λ) ≃ B(λ). One of the key ingredients of our approach is the perfect basis theory for generalized Kac–Moody algebras.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.