Abstract
AbstractThe integral group rings for finite groups are precisely those fusion rings whose basis elements have Frobenius–Perron dimension 1, and each is categorifiable in the sense that it arises as the Grothendieck ring of a fusion category. Here, we analyze the structure and representation theory of fusion rings with a basis of elements whose Frobenius–Perron dimensions take exactly one value distinct from 1. Our goal is a set of results to assist in characterizing when such fusion rings are categorifiable. As proof of concept, we complete the classification of categorifiable near‐group fusion rings for an infinite collection of finite abelian groups, a task that to‐date has only been completed for three such groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.