Abstract

We describe a model-theoretic setting for the study of Shimura varieties, and study the interaction between model theory and arithmetic geometry in this setting. In particular, we show that the model-theoretic statement of a certain${\mathcal{L}}_{\unicode[STIX]{x1D714}_{1},\unicode[STIX]{x1D714}}$-sentence having a unique model of cardinality$\aleph _{1}$is equivalent to a condition regarding certain Galois representations associated with Hodge-generic points. We then show that for modular and Shimura curves this${\mathcal{L}}_{\unicode[STIX]{x1D714}_{1},\unicode[STIX]{x1D714}}$-sentence has a unique model in every infinite cardinality. In the process, we prove a new characterisation of the special points on any Shimura variety.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.