Abstract
We introduce the notion of differential λ-category as an extension of Blute-Cockett-Seely's differential Cartesian categories. We prove that differential λ-categories can be used to model the simply typed versions of: (i) the differential λ-calculus, a λ-calculus extended with a syntactic derivative operator; (ii) the resource calculus, a non-lazy axiomatisation of Boudol's λ-calculus with multiplicities. Finally, we provide two concrete examples of differential λ-categories, namely, the category MRel of sets and relations, and the category MFin of finiteness spaces and finitary relations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.