Abstract

We introduce a notion of Milnor square of stable $$\infty $$ -categories and prove a criterion under which algebraic K-theory sends such a square to a cartesian square of spectra. We apply this to prove Milnor excision and proper excision theorems in the K-theory of algebraic stacks with affine diagonal and nice stabilizers. This yields a generalization of Weibel’s conjecture on the vanishing of negative K-groups for this class of stacks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.