Abstract
From every pair of adjoint functors it is possible to produce a (possibly trivial) equivalence of categories by restricting to the subcategories where the unit and counit are isomorphisms. If we do this for the adjunction between effect algebras and abstract convex sets, we get the surprising result that the equivalent subcategories consist of reflexive order-unit spaces and reflexive base-norm spaces, respectively. These are the convex sets that can occur as state spaces in generalized probabilistic theories satisfying both the no-restriction hypothesis and its dual. The linearity of the morphisms is automatic. If we add a compact topology to either the states or the effects, we can obtain a duality for all Banach order-unit spaces or all Banach base-norm spaces, but not both at the same time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Electronic Proceedings in Theoretical Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.