Abstract
Using a filtration on the Grothendieck ring of triangulated categories, we define the motivic categorical dimension of a birational map between smooth projective varieties. We show that birational transformations of bounded motivic categorical dimension form subgroups, which provide a nontrivial filtration of the Cremona group. We discuss some geometrical aspect and some explicit example. We can moreover define, in some cases, the genus of a birational transformation, and compare it to the one defined by Frumkin in the case of threefolds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.