Abstract
We show that either of the two reasonable choices for the category of compact quantum groups is nice enough to allow for a plethora of universal constructions, all obtained “by abstract nonsense” via the adjoint functor theorem. This approach both produces new objects (such as the coproduct of a family of compact quantum groups or the compact quantum group freely generated by a locally compact quantum space) and recovers in a uniform setting constructions which have appeared in the literature, such as the quantum Bohr compactification of a locally compact semigroup. We also provide Tannakian descriptions of these universal constructions, and characterize epimorphisms and monomorphisms in the category of compact quantum groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.