Abstract
The study of structure systems, an abstraction of the concept of first-order structures, is continued. Structure systems have algebraic systems rather than universal algebras as their algebraic reducts. Moreover, their relational component consists of a collection of relation systems on the underlying functors rather than simply a system of relations on a single set. Congruence systems of structure systems are introduced and the Leibniz congruence system of a structure system is defined. Analogs of the Homomorphism, the Second Isomorphism and the Correspondence Theorems of Universal Algebra are provided in this more abstract context. These results generalize corresponding results of Elgueta for equality-free first-order logic. Finally, a version of Godel’s Completeness Theorem is provided with reference to structure systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.