Abstract

We generalize Franz' independence in tensor categories with inclusions from two morphisms (which represent generalized random variables) to arbitrary ordered families of morphisms. We will see that this only works consistently if the unit object is an initial object, in which case the inclusions can be defined starting from the tensor category alone. The obtained independence for morphisms is called categorial independence. We define categorial Lévy processes on every tensor category with initial unit object and present a construction generalizing the reconstruction of a Lévy process from its convolution semigroup via the Daniell-Kolmogorov theorem. Finally, we discuss examples showing that many known independences from algebra as well as from (noncommutative) probability are special cases of categorial independence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.