Abstract

Prolonged exposure to unopposed estrogens is a major risk factor for the development of endometrial cancer. Oxidative metabolism of estradiol (E(2)) into the catecholestrogens (CEs), 4-hydroxyestradiol (4-OHE(2)) and 2-hydroxyestradiol (2-OHE(2)), may play an important role in estrogen carcinogenicity. CEs can be oxidized to the corresponding ortho-quinone derivatives with concomitant formation of the reactive oxygen species (ROS). Catechol-O-methyltransferase (COMT) is the major enzyme involved in the detoxification of CEs in extrahepatic tissues. We investigated the potential of E(2), 2-OHE(2) and 4-OHE(2) to induce microsatellite instability (MSI) and neoplastic transformation of immortalized human endometrial glandular (EM) cells. We also investigated the functional significance of COMT gene expression on modulating the effects of E(2) and CEs in EM cells. Our data indicated that E(2) and 4-OHE(2) induce MSI, ROS and neoplastic transformation in EM cells. The capacity of E(2) and its catechol metabolites to induce MSI, ROS and neoplastic transformation in EM cells is ranked as follows: 4-OHE(2) > E(2) > 2-OHE(2). Knockdown of COMT expression in EM cells resulted in increased estrogenic milieu and increased estrogen-induced cell proliferation. More importantly, knockdown of COMT increased the propensity of E(2) or CEs to induce ROS, MSI and neoplastic transformation of EM cells. In contrast, overexpression of COMT in EM cells significantly reduced the cellular estrogenic milieu and protected against E(2)- or CEs-induced, ROS, MSI and neoplastic transformation. The capacity of E(2) or CEs to induce neoplastic transformation of human endometrial glandular cells in vitro may suggest that E(2)-induced endometrial cancer is mediated by its metabolism into CEs. Our study clearly indicates that COMT gene expression plays a critical role in modulating the hormonal and carcinogenic effects of E(2) and CEs and, consequently, modifies the risk for E(2)-induced endometrial cancer. To the best of our knowledge, this is the first study to (i) demonstrate the potential capacity of estrogen and its catechol metabolites to induce neoplastic transformation of immortalized human endometrial glandular cells; and (ii) illustrate the important role of COMT gene expression in protecting against E(2)-induced endometrial cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.