Abstract

With its abundance of neurons and immunocytes, the gut is a potentially important site for the study of the interaction between the nervous and immune systems. Using immunohistochemical techniques, we tested the hypothesis that gut-associated lymphoid tissue in the porcine small intestine might receive catecholaminergic, cholinergic and peptidergic innervation. Antibodies against protein gene product (PGP) 9.5 were employed to detect neuronal membranes; antibodies against tyrosine hydroxylase (TH), type 2 vesicular monoamine transporter (VMAT-2) and choline acetyltransferase (ChAT) were used to detect catecholaminergic and cholinergic neurons; and antibodies to neuromedin U-8 (NMU-8), substance P (SP) and vasoactive intestinal peptide (VIP) were also used. PGP9.5-immunoreactive nerve fibers were observed between jejunal Peyer's patch (PP) follicles and in submucosal ganglia localized at the base of continuous ileal PP. Many ChAT-positive and a few TH-/VMAT-2-immunoreactive neurons or axons adjacent to jejunal and ileal PP were observed. Neurons and fibers from ganglia situated between or at the base of PP follicles manifested robust immunoreactivities to VIP and NMU-8; relatively less SP immunoreactivity was observed at these locations. All neuromedin-U 8-positive neurons observed exhibited immunoreactivity to ChAT as did some VIP-positive neurons. The specific chemical coding of enteric neurons in close apposition to jejunal and ileal PP and the differential localization of neuropeptides within the jejunal and ileal PP are indicative of neuroimmunomodulation at these sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call